Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 18 » мая 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Теплотехника		
	(наименование)		
Форма обучения:	очная		
	(очная/очно-заочная/заочная)		
Уровень высшего образовани	я: специалитет		
	(бакалавриат/специалитет/магистратура)		
Общая трудоёмкость:	108 (3)		
	(часы (ЗЕ))		
Направление подготовки:	21.05.06 Нефтегазовые техника и технологии		
_	(код и наименование направления)		
Направленность:	Нефтегазовые техника и технологии (СУОС)		
	(наименование образовательной программы)		

1. Общие положения

1.1. Цели и задачи дисциплины

Формирование комплекса знаний в области получения, преобразования, передачи и использования теплоты, формирование умений и навыков термодинамического исследования рабочих процессов в теплообменных аппаратах, теплосиловых установках и других теплотехнических устройствах, применяемых в отрасли.

1.2. Изучаемые объекты дисциплины

Основные законы термодинамики и теплопередачи, термодинамические процессы и циклы, свойства рабочих тел (газов и паров), процессы передачи тепла теплопроводностью, конвекцией и излучением, основы расчета теплообменных аппаратов и теплоэнергетических установок.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1		Знает способы и подходы к решению задач теплотехники и теплофизики; основные методы математического и компьютерного моделирования	особенности задач профессиональной деятельности с учетом	Зачет
ОПК-1	ИД-2ОПК-1	профиля с использованием	Умеет решать задачи профессиональной деятельности с учетом основных требований и потребностей нефтегазовой отрасли	Защита лабораторной работы
ОПК-1		моделирования и анализа теплотехнических задач, относящихся к сфере нефтегазовых технологий	Владеет навыками решать производственные и (или) исследовательские задачи профессиональной деятельности с учетом основных требований и потребностей нефтегазовой отрасли	Защита лабораторной работы

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-5	ИД-1ОПК-5	Знает способы проведения измерений, обработки и представления экспериментальных данных при решении теплотехнических задач	Знает места сбора информации, требуемой для принятия решений в научных исследованиях и в практической технической деятельности	Зачет
ОПК-5	ид-20ПК-5	Умеет проводить измерения и наблюдения; обрабатывать и представлять экспериментальные данные при решении теплотехнических задач	Умеет находить и перерабатывать информацию, требуемую для принятия решений в научных исследованиях и в практической технической деятельности, проводить патентный анализ и трансфер технологий	Защита лабораторной работы
ОПК-5		Владеет навыками проведения измерений и наблюдений, обработки и представления экспериментальных данных для решения теплотехнических задач в отрасли	Владеет навыками проведения патентного анализа и трансфера технологий	Защита лабораторной работы

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра
	14000	5
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	36	36
- лекции (Л)	16	16
- лабораторные работы (ЛР)	18	18
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)		
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	72	72
2. Промежуточная аттестация		
Экзамен		
Дифференцированный зачет		
Зачет	9	9
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	108	108

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам ЛР		Объем внеаудиторных занятий по видам в часах СРС
5-й семес	гр			
Рабочее тело и его параметры	4	4	0	10
Предмет и задачи курса термодинамики и ее метод. Исторические сведения о развитии термодинамики. Законы термодинамики. Термодинамическая система, окружающая среда и взаимодействие между ними. Термодинамическое равновесие и термодинамический процесс. Рабочее тело. Реальный газ и модель идеального газа. Основные параметры состояния. Законы идеального газа. Уравнения состояния для идеального и реального газов (Клапейрона и Ван-Дер-Ваальса). Тепловые свойства рабочих тел, газовая постоянная. Теплоемкость газов, ее виды и взаимосвязь между ними. Зависимость теплоемкости от температуры и давления. Истинная и средняя теплоемкости. Теплоемкость как функция процесса. Изохорная и изобарная теплоемкости, уравнение Майера. Внутренняя энергия и энтальпия газа. Смеси идеальных газов. Способы задания смеси газов, закон Дальтона. Определение плотности смеси, кажущейся относительной молярной массы и газовой постоянной. Теплоемкость смеси газов.				
Первый закон термодинамики	2	4	0	10
Сущность и уравнение первого закона термодинамики. Слагаемые первого закона: внутренняя энергия, работа и теплота. Определение работы для газового потока и неподвижного газа. Математическая формулировка первого закона для газового потока и неподвижного газа, правило знаков. Равновесные термодинамические процессы и их графическое изображение в P-V диаграмме. Работа расширения-сжатия. Обратимые и необратимые процессы. Круговые термодинамические процессы (циклы). Первый закон термодинамики для цикла. Применение первого закона термодинамики для анализа политропных процессов. Уравнение политропы, показатель политропы, определение работы и теплоты. Теплоемкость процесса: Частные случаи политропного процесса: изохорный, изобарный, изотермический и адиабатный процессы. P-V диаграмма политропных процессов.				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам ЛР	•	Объем внеаудиторных занятий по видам в часах СРС
Второй закон термолинамики				
Второй закон термодинамики Различные формулировки второго закона термодинамики. Прямые и обратные циклы и их эффективность. Идеальный термодинамический цикл Карно и его к.п.д. Теорема Карно. Абсолютная температура. Отрицательные абсолютные температуры и их получение. Энтропия - мера беспорядка и мера качества энергии. Изменение энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии и физический смысл второго закона термодинамики. Эксергия и максимальная работа. Статистический характер второго закона термодинамики. Термодинамическая вероятность. Уравнение Больцмана. Фундаментальный характер второго закона термодинамики. Иллюстрация второго закона термодинамики на примерах. Тепловые диаграммы	2	4	0	10
T-S и I-S. Изображение процессов на тепловых диаграммах. Теплопроводность и теплопередача	2	4	0	10
Способы распространения теплоты: теплопроводность, конвекция, излучение, их сравнительный анализ. Теплоотдача и теплопередача. Интенсификация процессов теплообмена. Тепловой поток, плотность теплового потока. Температурное поле, температурный градиент. Закон Фурье. Дифференциальное уравнение теплопроводности. Условия однозначности: геометрические, теплофизические, краевые. Тепловые граничные условия. Теплопроводность и теплопередача при стационарном режиме и граничных условиях первого и третьего рода. Тепловая изоляция. Теплопроводность при нестационарном режиме.				
Конвективный теплообмен	4	2	0	22
Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Свободная и вынужденная конвекция. Ламинарный и турбулентный режим течения. Математическая постановка и пути решения краевой задачи конвективного теплообмена. Основы теории подобия. Критериальные уравнения теплоотдачи при свободном и вынужденном движении среды. Отдельные задачи конвективного теплообмена в однофазной среде. Теплоотдача при вынужденном движении жидкости в трубах и каналах. Теплоотдача при свободном движении теплоносителя. Внешнее обтекание тел простой формы. Конвективный теплообмен в замкнутом объеме. Интенсификация теплообмена.				
	l	l		

Наименование разделов дисциплины с кратким содержанием		ем аудито	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Теплообмен излучением. Сложный теплообмен Физическая сущность лучистого теплообмена, виды потоков излучения и радиационные характеристики тел. Основные законы теплового излучения (Планка, Вина, Стефана-Больцмана, Кирхгофа). Лучистый теплообмен между телами, разделенными прозрачной средой. Защита от теплового излучения. Сложный теплообмен. Моделирование сложного теплообмена граничными условиями третьего рода.	2	0	0	10
ИТОГО по 5-му семестру	16	18	0	72
ИТОГО по дисциплине	16	18	0	72

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Исследование политропных процессов.
2	Исследование работы компрессора.
3	Определение коэффициента теплопроводности твердого тела методом трубы.
4	Исследование теплоотдачи при свободном движении воздуха.

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке
	1. Основная литература	
1	Кудинов В. А., Карташов Э. М., Стефанюк Е. В. Техническая термодинамика и теплопередача: учебник для бакалавров. Москва: Юрайт, 2016. 442 с. 34,26 усл. печ. л.	13
2	Нащокин В. В. Техническая термодинамика и теплопередача: учебное пособие для вузов. 4-е изд., стер. Москва: A3-book, 2008. 469 с.	211
3	Нащокин В. В. Техническая термодинамика и теплопередача: учебное пособие для вузов. 4-е изд., стер. Москва: Aз-book, 2009. 469 с.	165
4	Теплотехника : учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 5-е изд., стер. М. : Высш. шк., 2006. 671 с.	3
5	Теплотехника: учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 5-е изд., стер. Москва: Высшая школа, 2005. 671 с.	4
6	Теплотехника : учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 7-е изд., испр. М. : Высш. шк., 2009. 671 с.	19
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Исаев С. И. Термодинамика: учебник. 3-е изд., перераб. и доп. Москва: Изд-во МГТУ им. Н. Э. Баумана, 2000. 413 с.	33
2	Мухачев Г. А., Щукин В. К. Термодинамика и теплопередача: учебник для вузов. 3-е изд., перераб. Москва: Высшая школа, 1991. 480 с.	244
3	Поршаков Б. П., Козаченко А. Н. Основы термодинамики и теплопередачи: учебно-методическое пособие. Москва: Нефть и газ, 2002. 130 с.	10
4	Проселков Ю. М. Теплопередача в скважинах. Москва : Недра, 1975. 223 с.	1

5	Рамазанова Э. М. Э. кызы, Велиев Ф. Г. оглы Прикладная термодинамика нефтегазоконденсатных месторождений. Москва : Недра, 1986. 223 с. 14,0 усл. печ. л.	1	
	2.2. Периодические издания		
	Не используется		
	2.3. Нормативно-технические издания		
	Не используется		
	3. Методические указания для студентов по освоению дисциплины		
	Не используется		
	4. Учебно-методическое обеспечение самостоятельной работы студента		
	Не используется		

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная литература	Литвин А. М. Техническая термодинамика: учебник / А. М. Литвин Москва Ленинград: Госэнергоиздат, 1963		локальная сеть; авторизованный доступ
Дополнительная литература	Перегудов В. В. Теплотехника и теплотехническое оборудование: учебник для техникумов / В. В. Перегудов Москва: Стройиздат, 1990.		локальная сеть; авторизованный доступ
Дополнительная литература	Теплотехника (курс общей теплотехники): учебник для вузов / А. А. Щукин [и др.] Москва: Металлургия, 1973.		локальная сеть; авторизованный доступ
Основная литература	Дыблин Б. С. Основы технической термодинамики и теплотехники: учебное пособие / Б. С. Дыблин Пермь: Изд-во БФ ПНИПУ, 2013.		сеть Интернет; свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	MS Windows XP (подп. Azure Dev Tools for Teaching до 27.03.2022)
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567

Вид ПО	Наименование ПО
	ABINS.NET каф.СПМиТМ
разработкой, проектированием, моделированием и	
внедрением	

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Вид занятий Наименование необходимого основного оборудования и технических средств обучения	
Лабораторная работа	Лабораторное оборудование "Теплотехника"	11
Лекция	ноутбук, проектор	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
------------------------------	--

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «ТЕПЛОТЕХНИКА»

Приложение к рабочей программе дисциплины

Направление: 21.05.06 Нефтегазовые техника и технологии

Направленность (профиль) 21.05.06.02 Технология бурения нефтяных и

образовательной программы: газовых скважин (СУОС)

21.05.06.04 Разработка и эксплуатация

нефтяных и газовых месторождений (СУОС) 21.05.06.07 Нефтегазовые техника и технологии

(CYOC)

21.05.06.08 Машины и оборудование нефтяных

и газовых промыслов (СУОС)

21.05.06.09 Проектирование и эксплуатация нефтегазопроводов и хранилищ (СУОС)

Квалификация выпускника: «Специалист»

Выпускающая кафедра: Нефтегазовые технологии

Форма обучения: Очная

Курс: 3 Семестр: 5

Трудоёмкость:

Кредитов по рабочему учебному плану: 3 ЗЕ Часов по рабочему учебному плану: 108 ч.

Форма промежуточной аттестации:

Зачёт: 5 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Теплотехника» является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения аттестации обучающихся промежуточной ПО дисциплине разработан соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (пятого семестра учебного плана) и разбито на 2 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине «Теплотехника» (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля						
Контролируемые результаты обучения по дисциплине (ЗУВы)		Текущий		жный	Итоговый		
		ТО	ОЛР/ ОПЗ	Т/КР	Зачёт		
Усвоенные знания							
3.1 Знает способы и подходы к решению задач		TO1			TB1		
теплотехники и теплофизики; основные методы							
математического и компьютерного моделирования.							
3.2 Знает способы проведения измерений, обработки и		TO2			TB2		
представления экспериментальных данных при							
решении теплотехнических задач.							
Освоенные умения							
У.1 Умеет решать общие задачи теплотехнического			ОЛР1		П31		
профиля с использованием методов математического и							
компьютерного моделирования.							
У.2 Умеет: проводить измерения и наблюдения;			ОЛР2		П32		
обрабатывать и представлять экспериментальные							
данные при решении теплотехнических задач.							
Приобретенные владения							
В.1 Владеет методами математического			ОЛР3		П33		
моделирования и анализа теплотехнических задач,							
относящихся к сфере нефтегазовых технологий.							
В.2 Владеет: навыками проведения измерений и			ОЛР4		П34		
наблюдений, обработки и представления							
экспериментальных данных для решения							

C — собеседование по теме; TO — коллоквиум (теоретический опрос); K3 — кейс-задача (индивидуальное задание); $O\Pi P$ — отчет по практическому занятию; T/KP — рубежное тестирование (контрольная работа); TB — теоретический вопрос; TB — практическое задание; TB — комплексное задание дифференцированного зачета.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде зачёта, проводимая с учётом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной учебного процесса, управление эффективности процессом формирования компетенций обучаемых, повышение мотивации предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования бакалавриата, специалитета и магистратуры ПНИПУ программам предусмотрены следующие периодичность текущего виды контроля И успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
- контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ.

2.2.1. Защита лабораторных работ

Всего запланировано 4 лабораторных работы. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме зачета. Зачет по дисциплине основывается на результатах выполнения предыдущих индивидуальных заданий студента по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачета приведены в общей части ФОС образовательной программы.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.4. Типовые вопросы и задания для зачета по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Термодинамическая система и параметры состояния.
- 2. Первый закон термодинамики.
- 3. Второй закон термодинамики и направленность процессов.
- 4. Основные механизмы переноса теплоты.
- 5. Явление теплоотдачи, коэффициент теплоотдачи и его физический смысл.
- 6. Понятие лучистого теплообмена.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Вычислить термический к.п.д. заданного прямого цикла.
- 2. Компрессор всасывает $600 \text{ м}^3/\text{ч}$ воздуха при давлении 1 бар и $t = 20^{\circ}\text{C}$ и

сжимает его до давления 5 бар. Определить теоретическую мощность на привод компрессора при политропном сжатии (n = 1,25).

- 3. Определить плотность воздуха, находящегося в помещении объёмом 50м³ при нормальных условиях.
- 4. Определить максимальную длину волны излучения серого тела, если оно нагрето до 500К.
- 5. Вычислить погонный тепловой поток с поверхности трубы диаметром 0.5 м, если температурный напор равен 40°C , а коэффициент теплоотдачи $25 \text{ Br/m}^2/\text{K}$.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Для условий лабораторной работы №3 рассчитать термическое сопротивление цилиндрического слоя испытуемого материала. Сравнить полученное значение с термическим сопротивлением плоского слоя той же толщины.
- 2. Показатель политропы расширения n = 1.23, атмосферное давление 99500 Па, избыточное давление после изохорного расширения 120 мм. вод. ст. Определить начальное избыточное давление в условиях лабораторной работы.
- 3. Коэффициент теплоотдачи с поверхности вертикальной трубы диаметром 0.05 м, длиной 1 м равен $25~{\rm Bt/m^2/K}$. Определить число Nu, если теплопроводность воздуха $0.025~{\rm Bt/m/K}$.

2.5. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовые контрольные задания для оценки результатов обучения по дисциплине

Вопросы для контроля знаний:

- 1. Что является основными параметрами состояния термодинамической системы?
 - 2. Какой вид имеет уравнение состояния идеального газа?
 - 3. Что такое термодинамический процесс и термодинамический цикл?
 - 4. Какова формулировка первого закона термодинамики?
 - 5. Какова формулировка второго закона термодинамики?
 - 6. Какие существуют основные виды передачи теплоты?
 - 7. Сформулируйте основной закон теплопроводности.
- 8. Каков физический смысл и какова размерность коэффициента теплопроводности?
- 9. Запишите возможные аналитические решения для одномерных и двумерных стационарных задач теплопроводности.
 - 10. Что такое конвективный теплообмен?
 - 11. Что такое цикл Карно, и для чего он используется?
- 12. В чем заключается различие между стационарными и нестационарными температурными полями?
- 13. Что называют коэффициентом теплоотдачи? От каких факторов он зависит?
 - 14. Назовите основные режимы течения теплоносителя.
 - 15. Назовите основные числа (критерии) подобия в теории теплообмена.
 - 16. Что представляют собой критериальные уравнения теплообмена?
- 17. Опишите устройство и принцип работы термопары. Какие разновидности термопар Вам известны.
 - 18. В чём различие между обратимыми и необратимыми циклами?
- 19. Сформулируйте принцип возрастания энтропии и физический смысл второго закона термодинамики.
 - 20. В чём заключается аналогия между тепловой и рабочей диаграммами?
- 21. Перечислите основные типы компрессоров и назовите их основные характеристики.
- 22. Сформулируйте порядок термодинамического расчёта многоступенчатого идеального компрессора.
- 23. В чём заключается математическая формулировка задачи конвективного теплообмена?
 - 24. Какие виды условий однозначности вам известны?
- 25. Каков физический смысл критериев Нуссельта, Рейнольдса, Прандтля и Грасгофа?
 - 26. Запишите общий вид уравнения подобия конвективного теплообмена.

Задания для контроля умений:

- 1. Температура воздуха в аудитории 22°C, атмосферное давление 99.5 кПа. Определить плотность воздуха.
- 2. Определить удельный объем CO2, находящегося при температуре 300°C и давлении 3МПа.
- 3. Определить температуру воздуха после политропного расширения с показателем политропы n=1.4 до давления 100 кПа, если начальное давление равняется 500 кПа, а начальный удельный объем $0.004~{\rm m}^3/{\rm kr}$.
 - 4. Запишите первый закон термодинамики для изобарного процесса.
- 5. Определите цикловую работу одноступенчатого поршневого компрессора (n = 1.3), имеющего степень повышения давления 5. Начальное давление 95 кПа при температуре 300 К.
- 6. Отношение радиусов цилиндрической стенки R2/R1 = 1.5, разность температур на поверхностях t1 t2 = 50°C. Определить толщину цилиндрической стенки, если градиент на внутренней поверхности стенки равен 50 К/м.
- 7. Через плоскую стенку толщиной S=1 м, теплопроводностью 40 Bt/(м K) передается тепловой поток плотностью 5000 Bt/кв.м. Найти внешнюю температуру T2, если внутренняя температура T1=100°C.
- 8. Определить погонный тепловой поток (Bт/м) с поверхности трубы диаметром 150 мм и длиной 1 м в окружающую среду с температурой 10°C, если температура поверхности 100°C, коэффициент теплоотдачи 24 $Bт/м^2/K$.
- 9. Найти коэффициент теплоотдачи нагретой стенки площадью 10 кв.м и температурой 150 град.С, если в окружающую среду температурой 20°С передается тепловой поток 500 Вт.
- 10. Через цилиндрический слой размерами R1=0.1 и R2=0.15 передается тепловой поток. Плотность потока на внутренней поверхности $120~{\rm Bt/m}^2$. Определить плотность потока на наружной поверхности.
- 11. Определить подведенную и отведенную теплоту, а также термодинамический КПД цикла Дизеля при степени сжатия 8, степени предварительного расширения 2.6, начальном давлении 90 000 Па и начальной температуре 30 град.С. Рабочее тело воздух.
- 12. Определить коэффициент теплопроводности плоского слоя, если подведенный тепловой поток равен 10Вт, площадь слоя 1 м^2 , толщина 0.1 м, а разность температур на наружных поверхностях 3°C.
- 13. Определить коэффициент теплоотдачи с поверхности вертикальной трубы диаметром $0.05\,$ м, длиной $1\,$ м, если теплопроводность воздуха $0.027\,$ Bт/м/K, а число Nu=8.25.
- 15. Определить начальное давление воздуха после политропного расширения с показателем политропы n = 1.4 до давления 100 кПа, если температура после расширения упала до -20 град. С. Начальная температура 300 К.
- 16. Температура воздуха в резервуаре 24 град.С, давление 300500 Па. Определить удельный объем воздуха и его массу, если геометрический объем резервуара 860 л.
 - 17. Вычислить термический к.п.д. заданного прямого цикла.
 - 18. Компрессор всасывает 600 м3/ч воздуха при давлении 1 бар и t = 20°C и

сжимает его до давления 5 бар. Определить теоретическую мощность на привод компрессора при политропном сжатии (n = 1,25).

- 19. Изобразить стационарную картину изотермических линий в поперечном и продольных сечениях цилиндрической трубы при нагреве её изнутри.
- 20. Определить коэффициент теплоотдачи с поверхности вертикальной трубы диаметром 0.015 м, длиной 3 м, если теплопроводность воздуха 0.02 Bт/м/K, а число Nu = 175.
- 21. Рассчитать значение показателя политропы сжатия в компрессоре, если нач. температура равна 20° C, нач. давление 1 атм, температура разогрева газа равна 75 K, π_{κ} =7,5.

Задания для контроля владений:

- 1. Определить подведенную теплоту в процессе, если изменение внутренней энергии 105 кДж, а работа расширения 200 кДж.
- 2. Определить энтальпию в процессе, если изменение температуры равно 40 градусов, политропная теплоемкость -1150 Дж/кг/К, а располагаемая работа -78 Дж/кг.
- 3. Определить термодинамический КПД, если подведенная теплота 132 кДж, а отведенная теплота 95 кДж.
- 4. Определить подведенную теплоту, если термодинамический КПД 63%, а в цикле отводится 1225 Дж теплоты.
 - 5. Построить обобщенную рабочую диаграмму цикла Карно.
 - 6. Построить обобщенную тепловую диаграмму цикла Дизеля.
 - 7. Определить удельную газовую постоянную кислорода (О2).
- 8. Определить тепловой поток с наружной поверхности цилиндрического ствола орудия, если коэффициент теплопроводности 50 Вт/м/К, градиент температуры по наружной поверхности 10 К/м, внутренний диаметр ствола 100 мм, толщина стенки 8 мм.
- 9. Записать уравнение нестационарной теплопроводности для одномерного поля температур.
- 10. Найти температуру среды, если с нагретой стенки площадью 5 кв.м и температурой 150° С, если в окружающую среду передается тепловой поток 500 Вт при коэффициенте теплоотдачи $20~{\rm Bt/m}^2/{\rm K}$.
- 11. Показатель политропы расширения n = 1.23, атмосферное давление 99500 Па, избыточное давление после изохорного расширения 120 мм. вод. ст. Определить начальное избыточное давление в условиях лабораторной работы.
- 12. Цикловая работа некоторого ДВС 1350 кДж, подведенная теплота 2000 кДж. Определить термодинамический КПД.
- 13. Определить располагаемую работу некоторого политропного процесса с n = 1.3, если работа расширения равна 1.5 МДж.
- 14. Какова температура воздуха в помещении при проведении замеров, если давление равно 101 кПа, а удельный объем 500 $\text{м}^3/\text{кг}$.
- 15. Чему равен термодинамический КПД, если подведенная теплота 2050 кДж, а отведенная теплота 950 кДж.

- 16. Чему равна удельная газовая постоянная диоксида углерода (СО2).
- 17. Как изменится плотность азота (N2), если его изобарно нагреть на 20 градусов?
- 18. Коэффициент теплоотдачи с поверхности вертикальной трубы диаметром $0.05~\rm M$, длиной $1~\rm M$ равен $25~\rm Bt/M2/K$. Определить число Nu, если теплопроводность воздуха $0.025~\rm Bt/M/K$.
- 19. Для условий лабораторной работы №3 рассчитать термическое сопротивление цилиндрического слоя испытуемого материала. Сравнить полученное значение с термическим сопротивлением плоского слоя той же толщины.
- 20. Определить максимальную длину волны излучения серого тела, если оно нагрето до 500К.